
♦ II ♦ComputationalGeometry

1

2 ♦ Computational Geometry

��AA
AA�� II.2Point in Polyhedron TestingUsing Spherial PolygonsPaulo Cezar Pinto Carvalho and Paulo Roma CavalantiIMPA, Instituto de Matematia Pura e ApliadaUFRJ, Universidade Federal do Rio de JaneiroRio de Janeiro, Brasil

pcezar,roma@visgraf.impa.br

♦ Introdution ♦

This gem presents a method based on spherical polygons to determine if a given point is
inside or outside a three-dimensional polyhedron, given by its face list. This approach
extends a well-known 2D technique (Haines 1994) to 3D.

In two dimensions, one can decide whether a point p is inside a simple polygon P by
computing the signed angle, around p, determined by each side of P . If p is not on the
boundary of P , the sum S of all such signed angles is necessarily −2π, 0 or 2π. If S = 0,
p is exterior to P . Otherwise, p is interior to P . Usually, this method is considered to
be inferior to the one which is based on counting the number of intersections with P of
a ray through p. However, it deserves attention for its elegance and simplicity.

Below, it is shown how to extend the signed angle method to the 3D problem. It is
assumed that P is a simple polyhedron, given by its face list, in which the faces are
consistently oriented.

♦ Method of Solution ♦

First observe that the measure of the signed angle corresponding to an edge is (in
the 2D case) the measure of the directed arc obtained by projecting that edge onto
the unit circle whose center is the point p being tested. The arc is positive if its
orientation is counterclockwise and negative otherwise. The corresponding operation
in three dimensions is to project each face of the polyhedron onto a unit sphere of
center p and compute the signed area of the spherical polygon thus determined. The
sign is positive if the spherical polygon has counterclockwise orientation and negative
otherwise (Figure 1). In analogy to the 2D case, the following holds:

Theorem 1 : The sum S of the signed areas of the projections of all faces of the simple

polyhedron P onto the unit sphere of center p is necessarily 0, 4π or −4π. If S = 0,42 Copyright c© 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

IBM ISBN 0-12-543455-3
Macintosh ISBN 0-12-543457-X

II.2 Point in Polyhedron Testing Using Spherial Polygons ♦ 43
p

Figure 1. Projeting faes in 3D.
then p is exterior to P . Otherwise, p is interior to P .

Proof: The projections of all edges of P partition the surface of the unit sphere into
a finite family Q = {Q1, Q2, ..., Qm} of spherical polygons. The projection of a face of
P is a finite union of elements of Q. Each element of Q may appear in the projection
of several faces and in each case its area may contribute positively or negatively to the
total signed area S, depending on the face orientation. Hence, S can be expressed as
S =

∑
m

i=1 αi ∗area(Qi), where αi is the net contribution of Qi. Assume that p is interior
to P and that the faces of P have counterclockwise orientation. Let us compute the
contribution αi of a spherical polygon Qi to S. Consider a ray defined by p and an
arbitrary point interior to Qi. This ray may cross several faces of P . The first crossing
goes from the inside to the outside of P (Figure 2). As a consequence, the orientation of
the projection of the first face crossed is counterclockwise and the area of Qi is counted
positively. If there is another crossing, then it goes from the outside to the inside and so
the corresponding face projects onto a clockwise spherical polygon. Since p is interior,
the total number of crossings is odd and the ray goes from the inside to the outside
once more often than it goes the other way. So, the net contribution of Qi is positive
and αi = 1. Since this happens for every Qi, S is equal to the area of the sphere, which
is given by 4π.

If the faces of P have clockwise orientation, then S = −4π. Finally, if p is exterior,
the number of crossings is even, and the total contribution of each spherical polygon is
zero, regardless of the orientation of the faces of P . Thus, in this case S = 0.

44 ♦ Computational Geometry
in

in
out

out

p

Qi

Figure 2. Crossing faes.Computing Signed Areas of Spherial Projetions of Polygons
To use the previous theorem to locate a point p with respect to a polyhedron P , it is
necessary to find the signed area of the projection of each face F of P onto the unit
sphere of center p. It is possible to project each vertex onto the sphere and employ the
routine presented in a previous gem (Miller 1994) to compute 1 the signed area of the
spherical polygon thus obtained. A more practical approach avoids the projection of
faces onto the sphere. Presented below, it is based on the classical formula of Girard
for the area of a spherical triangle.

According to Girard’s formula (Coxeter 1961,Lines 1965,Bian 1992), the area of a
spherical triangle on the unit sphere is given by S = A + B + C − 2π, where A,B

and C are the (spherical) angles at each vertex, and 2π is the spherical excess. This is
readily extended for spherical polygons by adjusting the excess. If a spherical n−gon
is triangulated into n − 2 spherical triangles, its area may be expressed by

S = (
∑

i

Ai) − 2(n − 2)π. (1)

The spherical angle at a given vertex A is the angle α determined by the tangents
to two great circles corresponding to the sides that cross at A. But α is also the angle
formed by the planes containing those two great circles. Thus, α can be determined from
the normal vectors to each of these planes, which can be computed without actually
projecting the vertices onto the sphere (Figure 3).

1A correction to his implementation concludes this work.

II.2 Point in Polyhedron Testing Using Spherial Polygons ♦ 45
p

A

v

α

Figure 3. Computing spherial angles.
Note, however, that the corresponding angle A of the spherical polygon may be either

α or 2π − α, depending on whether A is the projection of a convex or concave angle.
This can be ascertained by computing the vector product of the two corresponding face
edges and comparing the resulting vector with the normal vector to the plane. If they
have the same orientation, the angle is convex and A = α; otherwise, A = 2π − α.

This procedure is executed for each vertex of the polygon, and Equation (1) then
gives the area of the spherical polygon. Finally, it is necessary to find the sign to be
attributed to this area. It suffices to compute the inner product of the face normal
vector and the vector pv that joins the center p of the sphere to an arbitrary vertex v

of the face. If this product is positive, the projection of F is counterclockwise and its
signed area is positive. Otherwise, the area takes a negative value.Code Revision for Computing the Area of a Spherial Polygon
The published routine (op. cit., page 136) used to compute the area of a spherical
polygon does not work in every case. The error lies in the statementif (Lam2 < Lam1) Exess = - Exess;
appearing as the penultimate line of the final if statement. The method fails when the
polygon crosses the 0◦ meridian (the case is analogous to crossing the international date
line). It should be replaced by

46 ♦ Computational Geometrydouble Lam;Lam = (Lam2 - Lam1 > 0) ? Lam2 - Lam1 : Lam2 - Lam1 + 4*HalfPi;if (Lam > 2*HalfPi) Exess= -Exess;
With this revision in place the routine may be used to find the correct orientation of
the projected face and hence the correct signed area.

♦ ANSI C Code ♦

The code given below reads the face list of a polyhedron (description of each face,
consisting of the number of vertices and the coordinates of each vertex) and tests an
arbitrary point for inclusion in the polyhedron. To keep it short, the code does not test
whether a given point is too close to a polygon plane. In practice, should this happen,
the code should check for proximity to the polygon and return point on the boundary.#inlude <math.h>#inlude <stdlib.h>#inlude <stdio.h>#ifndef max#define max(a,b) ((a)>(b)?(a):(b))#define min(a,b) ((a)<(b)?(a):(b))#endif#define PI 3.141592653589793324#define GeoZeroVe(v) ((v).x = (v).y = (v).z = 0.0)#define GeoMultVe(a,b,) \do {().x = a*(b).x; ().y = a*(b).y; ().z = a*(b).z; } while (0)#define Geo_Vet(a,b,) \do {().x = (b).x-(a).x; ().y = (b).y-(a).y; ().z = (b).z-(a).z;} while (0)typedef double Rdouble;typedef float Rfloat;typedef strut _GeoPoint { Rfloat x, y, z; } GeoPoint;/*========================= Geometrial Proedures ======================= */Rdouble GeoDotProd (GeoPoint *ve0, GeoPoint *ve1){return (ve0->x * ve1->x + ve0->y * ve1->y + ve0->z * ve1->z);}void GeoCrossProd (GeoPoint *in0, GeoPoint *in1, GeoPoint *out){out->x = (in0->y * in1->z) - (in0->z * in1->y);out->y = (in0->z * in1->x) - (in0->x * in1->z);out->z = (in0->x * in1->y) - (in0->y * in1->x);}Rdouble GeoTripleProd (GeoPoint *ve0, GeoPoint *ve1, GeoPoint *ve2)

II.2 Point in Polyhedron Testing Using Spherial Polygons ♦ 47{GeoPoint tmp;GeoCrossProd (ve0, ve1, &tmp);return (GeoDotProd(&tmp, ve2));}Rdouble GeoVeLen (GeoPoint *ve){return sqrt (GeoDotProd (ve, ve));}int GeoPolyNormal (int n_verts, GeoPoint *verts, GeoPoint *n){int i;Rfloat n_size;GeoPoint v0, v1, p;GeoZeroVe (*n);Geo_Vet (verts[0℄, verts[1℄, v0);for (i = 2; i < n_verts; i++){Geo_Vet (verts[0℄, verts[i℄, v1);GeoCrossProd (&v0, &v1, &p);n->x += p.x; n->y += p.y; n->z += p.z;v0 = v1;}n_size = GeoVeLen (n);if (n_size > 0.0){GeoMultVe (1/n_size, *n, *n);return 1;}elsereturn 0;}/*========================= geo_solid_angle =========================*//*Calulates the solid angle given by the spherial projetion ofa 3-D plane polygon*/Rdouble geo_solid_angle (int n_vert, /* number of verties */GeoPoint *verts, /* vertex oordinates list */GeoPoint *p) /* point to be tested */{int i;Rdouble area = 0.0, ang, s, l1, l2;GeoPoint p1, p2, r1, a, b, n1, n2;GeoPoint plane;

48 ♦ Computational Geometryif (n_vert < 3) return 0.0;GeoPolyNormal (n_vert, verts, &plane);/* WARNING: at this point, a pratial implementation should hekwhether p is too lose to the polygon plane. If it is, thenthere are two possibilities:a) if the projetion of p onto the plane is outside thepolygon, then area zero should be returned;b) otherwise, p is on the polyhedron boundary.*/p2 = verts[n_vert-1℄; /* last vertex */p1 = verts[0℄; /* first vertex */Geo_Vet (p1, p2, a); /* a = p2 - p1 */for (i = 0; i < n_vert; i++){Geo_Vet(*p, p1, r1);p2 = verts[(i+1)%n_vert℄;Geo_Vet (p1, p2, b);GeoCrossProd (&a, &r1, &n1);GeoCrossProd (&r1, &b, &n2);l1 = GeoVeLen (&n1);l2 = GeoVeLen (&n2);s = GeoDotProd (&n1, &n2) / (l1 * l2);ang = aos (max(-1.0,min(1.0,s)));s = GeoTripleProd(&b, &a, &plane);area += s > 0.0 ? PI - ang : PI + ang;GeoMultVe (-1.0, b, a);p1 = p2;}area -= PI*(n_vert-2);return (GeoDotProd (&plane, &r1) > 0.0) ? -area : area;}/* ====================== main ========================== */int main (void){FILE *f;har s[32℄;int nv, j;GeoPoint verts[100℄, p;Rdouble Area =0.0;fprintf (stdout, "\nFile Name: ");

II.2 Point in Polyhedron Testing Using Spherial Polygons ♦ 49gets (s);if ((f = fopen (s, "r")) == NULL){fprintf (stdout, "Can not open the Polyhedron file \n");exit (1);}fprintf (stdout, "\nPoint to be tested: ");fsanf(stdin, "%f %f %f", &p.x, &p.y, &p.z);while (fsanf (f, "%d", &nv) == 1){for (j = 0; j < nv; j++)if (fsanf (f, "%f %f %f",&verts[j℄.x, &verts[j℄.y, &verts[j℄.z) != 3){fprintf (stdout, "Invalid Polyhedron file \n");exit (2);}Area += geo_solid_angle (nv, verts, &p);}fprintf (stdout, "\n Area = %12.4lf spherial radians.\n", Area);fprintf (stdout, "\n The point is %s",((Area > 2*PI) || (Area < -2*PI))? "inside" : "outside");fprintf (stdout, "the given polyhedron \n");return 1;}
♦ Bibliography ♦

(Bian 1992) Buming Bian. Hemispherical projection of a triangle. In David Kirk,
editor, Graphics Gems III, chapter 6.8, page 316. Academic Press, Boston, 1992.

(Coxeter 1961) H.S.M. Coxeter. Introduction to Geometry. John Wiley and Sons, New
York, 1961.

(Haines 1994) Eric Haines. Point in polygon strategies. In Paul Heckbert, editor,
Graphics Gems IV, pages 24–46. Academic Press, Boston, 1994.

(Lines 1965) L. Lines. Solid Geometry. Dover Publications, New York, 1965.

(Miller 1994) Robert D. Miller. Computing the area of a spherical polygon. In Paul
Heckbert, editor, Graphics Gems IV, pages 132–137. Academic Press, Boston,
1994.

