
Surfaces

Level Surfaces

One of the goals of this chapter is to use di¤erential calculus to explore surfaces,
in much the same way that we used di¤erential calculus to study curves in the
�rst chapter. In this section, we introduce two types of surfaces and some of
their properties.
To begin with, the level surface of level k of a function U (x; y; z) is de�ned

to be the set of all points in R3 which are solutions to

U (x; y; z) = k

Indeed, many of the most familiar surfaces are level surfaces of functions of 3
variables.

EXAMPLE 1 Find the equation of a sphere of radius R centered
at the origin.

Solution: Every point (x; y; z) on the sphere must be a distance R
from the origin. Thus, the length of every vector with initial point
(0; 0; 0) and �nal point (x; y; z) is R; which means thatq

(x� 0)2 + (y � 0)2 + (z � 0)2 = R

This in turn simpli�es to the following

x2 + y2 + z2 = R2;

1



A quadric surface is a level surface of a second degree polynomial Q (x; y) :
Indeed, the sphere of radius R centered at the origin is a level surface of level
k = R2 of the second degree polynomial

Q (x; y) = x2 + y2 + z2

For example, an ellipsoid is a surface of the form

x2

a2
+
y2

b2
+
z2

c2
= 1 ;

Other quadric surfaces include the elliptic paraboloids, which are de�ned by
equations of the form

z

c
=
x2

a2
+
y2

b2
;
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and the hyperbolic paraboloids, which are de�ned by equations of the form

z

c
=
x2

a2
� y

2

b2
;

In addition, there are the hyperboloids, where a hyperboloid in one sheet has
an equation of the form

x2

a2
+
y2

b2
� z

2

c2
= 1;
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and a hyperboloid in 2 sheets has an equation of the form

z2

c2
� x

2

a2
� y

2

b2
= 1;

And �nally, one of the most important classes of quadric surfaces are the elliptic
cones, which are surfaces de�ned by equations of the form

x2

a2
+
y2

b2
=
z2

c2
;

For example, the surface de�ned by x2 + y2 = z2 is a right cylindrical cone, of
the type used to de�ne the conics (see the end of this section):
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Check your Reading: What type of quadric surface is given by the equation

x2 � y2 + z2 = 4

Parametric Surfaces

Surfaces can also be de�ned parametrically. In particular, suppose each compo-
nent of a vector-valued function is a function of two variables u and v:

r (u; v) = hf (u; v) ; g (u; v) ; h (u; v)i (1)

Then the graph of r (u; v) over some region R in the uv-plane is a surface in R3;
and r (u; v) is called a parametrization of that surface.

Equivalently, x = f (u; v) ; y = g (u; v) ; and z = h (u; v) for u; v in R de�nes a
surface, and the variables u and v are often called the coordinates of the surface.
Given a parametric surface (1), we often desire to transform it into a level

surface representation of the form U (x; y; z) = k: Finding a level surface rep-
resentation often requires the use of trigonometric identities, such as

cos2 (t) + sin2 (t) = 1 1 + tan2 (t) = sec2 (t) 1� 2 sin2 (t) = cos (2t)
cosh2 (t)� sinh2 (t) = 1 1 + cot2 (t) = csc2 (t) 2 cos2 (t)� 1 = cos (2t)

Other identities that may be necessary include 2 sin (t) cos (t) = sin (2t) and
ete�t = 1:

EXAMPLE 2 Find a level surface representation of the surface
parameterized by

r (u; v) = hcos (u) cosh (v) ; sin (u) cosh (v) ; sinh (v)i
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Solution: Since x = cos (u) cosh (v) ; y = sin (u) cosh (v) ; and z =
sinh (v) ; the identity cos2 (u) + sin2 (u) = 1 leads to

x2 + y2 = cos2 (u) cosh2 (v) + sin2 (u) cosh2 (v)

= cosh2 (v)
�
cos2 (u) + sin2 (u)

�
= cosh2 (v)

As a result, the identity cosh2 (v)� sinh2 (v) = 1 leads to

x2 + y2 � z2 = cosh2 (v)� sinh2 (v) = 1

Thus, r (u; v) = hcos (u) cosh (v) ; sin (u) cosh (v) ; sinh (v)i is a para-
metrization of the level surface

x2 + y2 � z2 = 1

which we recognize as a hyperboloid in one sheet.

A sphere of radius R centered at the origin is often parametrized in terms of
longitude � and latitude '; which results in the parameterization

r (�; ') = hR cos (') cos (�) ; R cos (') sin (�) ; R sin (')i (2)

6



where � in [0; 2�] and ' is in [��=2; �=2] :

EXAMPLE 3 Show that (2) is a parameterization of the sphere of
radius R centered at the origin.

Solution: Since x = R cos (') cos (�) ; y = R cos (') sin (�) and
z = R sin (') ; the identity cos2 (�) + sin2 (�) = 1 leads to

x2 + y2 = R2 cos2 (') cos2 (�) +R2 cos2 (') sin2 (�)

= R2 cos2 (')
�
cos2 (�) + sin2 (�)

�
= R2 cos2 (')

Moreover, z2 = R2 sin2 (') implies that

x2 + y2 + z2 = R2 cos2 (') +R2 sin2 (') = R2

which is the equation of the sphere of radius R centered at the origin.

However, cartographers and mathematicians have long used parameterizations
of the sphere other than (2). For example, in 1599, the mapmaker Gerard
Mercator constructed a projection of the earth�s surface in which a straight line
on a map corresponds to a �xed compass bearing on the earth�s surface. To do
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so, he �rst imagined that the sphere was inside of a cylinder with radius R:

This led to the Mercator parametrization of the sphere:

r (�; �) = hR sech (�) cos (�) ; R sech (�) sin (�) ; R tanh (�)i

where the hyperbolic secant and tangent functions are de�ned

sech (�) =
1

cosh (�)
; tanh (�) =

sinh (�)

cosh (�)

We will examine the Mercator parametrization more closely in the exercises.

Check your Reading: How would you de�ne csch(t)?

Tangent Vectors to Parametric Surfaces

If q is a constant, then r (u; q) is a function of u only and is therefore a curve
(speci�cally, it is the v-curve for v = q). As a result, the velocity vector

ru = hfu; gu; hui
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is tangent to the curve. Since the curve lies on the surface parametrized by
r (u; v) = hf (u; v) ; g (u; v) ; h (u; v)i ; it follows that ru (p; q) is tangent to the
surface at the point with coordinates (p; q). Likewise, we de�ne rv = hfv; gv; hvi
and similarly it follows that rv (p; q) is also tangent to the surface at the point
corresponding to (p; q) :

Moreover, we say that the parametrization is regular at a point P on the surface
if ru and rv are nonzero and non-parallel at P ; otherwise, the parametrization
is said to be singular at P:

EXAMPLE 4 Find ru and rv for the sphere

r (u; v) = hcos (u) sin (v) ; sin (u) sin (v) ; cos (v)i

Solution: To �nd ru, we apply @u to r to obtain

ru = h� sin (u) sin (v) ; cos (u) sin (v) ; 0i

Likewise, to �nd rv; we apply @v to r to obtain

rv = hcos (u) cos (v) ; sin (u) cos (v) ;� sin (v)i
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ru

rv

Notice in example 3 that

ru � rv = � sin (u) sin (v) cos (u) cos (v) + cos (u) sin (v) sin (u) cos (v) = 0

That is, the vectors ru and rv are perpendicular for all (u; v). Parameterizations
in which ru and rv are orthogonal for all (u; v) are important in applications
because they introduce an orthogonal coordinate system in each tangent plane:

1

If ru � rv = 0 for all (u; v) ; then we say that the parametrization r (u; v) is
orthogonal.
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EXAMPLE 5 Find ru and rv and determine if the following para-
metrization is orthogonal:

r =


u2 � v2; 2uv; u2 + v2

�
Solution: To �nd ru, we apply @u to r to obtain

ru = h2u; 2v; 2ui

Likewise, to �nd rv; we apply @v to r to obtain

rv = h2v; 2u;�2vi

The dot product of ru with rv is given by

ru � rv = 4uv + 4uv � 4uv = 4uv

Since ru � rv 6= 0; the parametrization is not orthogonal.

Check your Reading: Are all orthogonal parameterizations also regular at
every point? Explain.

Surfaces of Revolution

If f (x) � 0 for all x in [a; b] ; then the revolution of y = f (x) about the x-axis
results in a surface of revolution.

As a parametric surface, this surface of revolution can be represented by

r (u; v) = hu; f (u) sin (v) ; f (u) cos (v)i

where (u; v) is in [a; b]� [0; 2�] : In single variable calculus, we derived formulas
for calculating the volume of a solid bounded by a surface of revolution.
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EXAMPLE 6 Find the equation of the surface of revolution ob-
tained by revolving the curve y = xe�x for x in [0; 3] about the
x-axis

Find the tangent vectors ru and rv: Is the parametrization orthog-
onal?

Solution: To do so, we notice that f (u) = ue�u; so that the para-
metrization is

r (u; v) =


u; ue�u sin (v) ; ue�u cos (v)

�
The graph of r (u; v) is shown below for (u; v) in [0; 3]� [0; 2�] :

Notice now that ru = h1; (e�u � ue�u) sin (v) ; (e�u � ue�u) cos (v)i
and

rv =


0;�ue�u cos (v) ; ue�u sin (v)

�
Moreover, it is rather easy to show that ru � rv = 0; which implies
that the parametrization is orthogonal.
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More generally, if f (u) � 0 for all u in [a; b] ; then

r (u; v) = hg (u) ; f (u) sin (v) ; f (u) cos (v)i

is the surface obtained by revolving the curve

r (u; 0) = hg (u) ; 0; f (u)i

about the x-axis, where u is in [a; b] and v is in [0; 2�].

EXAMPLE 7 What surface of revolution is obtained from revolv-
ing

r (u; 0) = hcos (u) ; 0; 3 + sin (u)i
about the x-axis? Find the tangent vectors ru and rv: Is the para-
metrization orthogonal?

Solution: Since r (u; 0) ; u in [0; 2�] ; is a circle of radius 1 centered
at (0; 0; 3) ; the surface is a torus parameterized by

r (u; v) = hcos (u) ; (3 + sin (u)) sin (v) ; (3 + sin (u)) cos (v)i

The graph of r (u; v) is shown below for (u; v) in [0; 2�]� [0; 2�] :

javaviewtorus

Notice now that ru = h� sin (u) ; cos (u) sin (v) ; cos (u) cos (v)i and

rv = h0;� (3 + sin (u)) cos (v) ; (3 + sin (u)) sin (v)i

It follows that ru � rv = 0; which implies that the parametrization is
orthogonal.

Exercises
Use a graphing calculator or computer algebra system to sketch each surface and
then �nd the level surface representations of each of the following parametric
equations. Also, calculate ru and rv and determine if the parameterization is
orthogonal.

1. r = hv sin (u) ; v cos (u) ; vi 2. r = hv sin (u) ; v; v cos (u)i
3. r = hsin (u) cos (v) ; cos (u) ; sin (u) sin (v)i 4. r = hsin (v) sin (u) ; cos (v) sin (u) ; cos (u)i
5. r = h2 sin (u) cos (v) ; 3 cos (u) ; 2 sin (u) sin (v)i 6. r = h2 sin (u) cos (v) ; 2 cos (u) ; sin (u) sin (v)i
7. r = hsin (u) cosh (v) ; sinh (v) ; cos (u) cosh (v)i 8. r = hsin (u) cosh (v) ; sin (u) sinh (v) ; cos (u)i
9. r = hsec (u) sin (v) ; sec (u) cos (v) ; tan (u)i 10. r =



v sin (u) ; v cos (u) ; v2 sin (2u)

�
11. r = hev sin (u) ; ev cos (u) ; e�vi 12. r =



sin (v) cos (u) ; sin (v) sin (u) ; sin2 (v) cos (2u)

�
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Verify that each of the following parameterizes the unit sphere. Then calculate
ru and rv. Is the parameterization orthogonal?

13. r = hcos (u) sin (v) ; cos (v) ; sin (u) sin (v)i 14. r = hsin (v) sin (u) ; cos (v) sin (u) ; cos (u)i
15. r = hsin (v) ; cos (u) cos (v) ; sin (u) cos (v)i 16. r = hcos (u) cos (v) ; sin (u) cos (v) ; sin (v)i
17. r =



u;
p
1� u2 sin (v) ;

p
1� u2 cos (v)

�
18. r =


p
1� u2; u sin (v) ; u cos (v)

�
19. r =

D
2u

u2+v2+1 ;
2v

u2+v2+1 ;
u2+v2�1
u2+v2+1

E
20. r =

D
2v

u2+v2+1 ;
2u

u2+v2+1 ;
u2+v2�1
u2+v2+1

E
Find the surface of revolution obtained by revolving the following surfaces about
the x-axis. Then �nd ru and rv and determine if the parametrization is orthog-
onal.

21. y = x; x in [0; 1] 26. y = x+ 1; x in [0; 1]
23. y = x� x2; x in [0; 1] 28. y = x� x3; x in [0; 1]
25. y = cosh (x) ; x in [�1; 1] 30. y = sin (x) ; x in [0; �]
27. r (u; 0) =



u2; 0; u

�
; u in [0; 1] 28. r (u; 0) = he�u ; 0; ui ; u in [0; 1]

29. r (u; 0) = h2 sin (u) ; 0; 3 + 2 cos (u)i 30. r (u; 0) = hsin (u) ; 0; 5 + cos (u)i
u in [0; 2�] u in [0; 2�]

31. Find another parametrization of the sphere of radius R centered at the
origin by revolving the upper half circle

y =
p
R2 � x2; x in [�R;R]

about the x-axis. Is the parametrization orthogonal?
32. Show that every parametric equation of the form

r (u; v) = hf (v) cos (u) ; f (v) sin (u) ; f (v)i

is a parametrization of a section the cone x2 + y2 = z2: Is the parametrization
orthogonal?
33. A Mobius strip is a surface parametrized by

r (u; v) =
D
cos (u) + v cos

�u
2

�
cos (u) ; sin (u) + v cos

�u
2

�
sin (u) ; v sin

�u
2

�E
for u in [0; 2�] and v in [�0:3; 0:3] :Graph the Mobius strip with either a graphing
calculator or a computer. Also �nd ru and rv: Is the parameterization of the
Mobius strip orthogonal?
34. Show that r (t; u; v) = hsin (t) cos (v) ; cos (t) cos (v) ; sin (u) sin (v) ; cos (u) sin (v)i

is a parametrization of the sphere in 4 dimensions given by

x2 + y2 + z2 + w2 = 1

35. Mercator: Use an identity for the hyperbolic trigonometric functions
to prove that

sech2 (A) + tanh2 (A) = 1
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Then show that the Mercator parametrization

r (�; �) = hR sech (�) cos (�) ; R sech (�) sin (�) ; R tanh (�)i

is indeed a parametrization of the sphere of radius R centered at the origin.
36. Mercator: Find r� and r� for the Mercator parameterization in ex-

ercise 35. Is the parameterization orthogonal? What does that imply about a
map constructed as a Mercator projection? Also, what happens to the length
of r� (0; �) as � approaches 1? What does this imply about the Mercator pro-
jection?
37. Mercator: Show that the Mercator projection in exercise 35 is a

surface of revolution (for � in (�1;1) ). How is the half circle in the xz-plane
related to the cylinder x2+ y2 = R2 as z approaches 1 on the cylinder? (More
in the Maple worksheet)
38. Cylindrical: The ray from the origin through the point P (x; y; z) on

a sphere of radius R intersects a right circular cylinder of radius R at only one
point, which we call Q:

If Q is of the form (R cos (u) ; R sin (u) ; Rv) ; then what are the coordinates of
P in terms of u and v? What is the resulting parameterization of the sphere?
Is it the Mercator projection?
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39. Find the parametrization of the torus which results from revolving the
circle

r (u) = hr sin (u) ; 0; R+ r cos (u)i

for u in [0; 2�] about the x-axis, where R > r > 0 are constants. *What is a
level surface representation of the torus?
41. What is the level surface representation of a sphere of radius R centered

at a point (h; k; l)? Explain.
42. Show that every cone whose horizontal cross-sections (i.e., level curves)

are circles is of the form
x2 + y2 = m2z2

What is the signi�cance of the m in this equation?
43. Write to Learn: Determine the longitude �0 and latitude '0 of your

present location, and then use (2) to �nd r� and r' at your present location.
In a short essay, present your results and determine the direction (north, south,
east, west) that r� and r' are pointing in.
44. Write to Learn: Derive the parameterization of the surface obtained

by revolving the curve y = f (x) , x in [a; b], about the y-axis. Present and
explain your derivation in a short essay.
45. Write to Learn: Stereographic projection assigns to each point (u; v; 0)

the point (x; y; z) on the unit sphere that is on the line from the point (0; 0; 1)
through the point (u; v; 0) .

Use similar right triangles to show that stereographic projection leads to the
following parameterization of the sphere:

r =

�
2u

u2 + v2 + 1
;

2v

u2 + v2 + 1
;
u2 + v2 � 1
u2 + v2 + 1

�
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