Surfaces

Level Surfaces

One of the goals of this chapter is to use differential calculus to explore surfaces,
in much the same way that we used differential calculus to study curves in the
first chapter. In this section, we introduce two types of surfaces and some of
their properties.

To begin with, the level surface of level k of a function U (x,y, z) is defined
to be the set of all points in R? which are solutions to

Ulz,y,z) =k

Indeed, many of the most familiar surfaces are level surfaces of functions of 3
variables.

EXAMPLE 1 Find the equation of a sphere of radius R centered
at the origin.

Solution: Every point (z,y, z) on the sphere must be a distance R
from the origin. Thus, the length of every vector with initial point
(0,0,0) and final point (z,y, z) is R, which means that

V@—0?+(@y—07+(:-07>=R

This in turn simplifies to the following

2’ +y*+ 2% = R,




A quadric surface is a level surface of a second degree polynomial Q (z,y).
Indeed, the sphere of radius R centered at the origin is a level surface of level
k = R? of the second degree polynomial

Q(z,y) =a"+y* +2°

For example, an ellipsoid is a surface of the form

Other quadric surfaces include the elliptic paraboloids, which are defined by
equations of the form




and the hyperbolic paraboloids, which are defined by equations of the form

In addition, there are the hyperboloids, where a hyperboloid in one sheet has
an equation of the form




and a hyperboloid in 2 sheets has an equation of the form

And finally, one of the most important classes of quadric surfaces are the elliptic
cones, which are surfaces defined by equations of the form

For example, the surface defined by 22 + y2 = 22 is a right cylindrical cone, of
the type used to define the conics (see the end of this section):



Check your Reading: What type of quadric surface is given by the equation

1,27y2+z2:4

Parametric Surfaces

Surfaces can also be defined parametrically. In particular, suppose each compo-
nent of a vector-valued function is a function of two variables u and v:

r(u,v) = <f (u,v) g (u7v) ) h(u7v)> (1)

Then the graph of r (u,v) over some region R in the uv-plane is a surface in R3,
and r (u,v) is called a parametrization of that surface.
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Equivalently, x = f (u,v), y = g (u,v), and z = h (u,v) for u,v in R defines a
surface, and the variables u and v are often called the coordinates of the surface.
Given a parametric surface (1), we often desire to transform it into a level
surface representation of the form U (z,y,z) = k. Finding a level surface rep-
resentation often requires the use of trigonometric identities, such as

cos? (t) +sin? (t) = 1 1+ tan? (t) = sec? (t) 1 —2sin? () = cos (2t)
cosh? (t) — sinh? (t) = 1 1+ cot? (t) = csc? (t) 2cos? (t) — 1 = cos (2t)

Other identities that may be necessary include 2sin (¢) cos (t) = sin (2¢) and
ele”t = 1.

EXAMPLE 2 Find a level surface representation of the surface
parameterized by

r (u,v) = (cos (u) cosh (v) , sin (u) cosh (v) , sinh (v))



Solution: Since z = cos (u) cosh (v), y = sin (u) cosh (v) , and z =
) =

sinh (v), the identity cos? (u) + sin® (u) = 1 leads to
2?2 +y* = cos? (u)cosh? (v) + sin? (u) cosh? (v)
= cosh? (v) [cos? (u) + sin® (u)]
= cosh? (v)

As a result, the identity cosh? (v) — sinh? (v) = 1 leads to
2?2 +y? — 2% = cosh? (v) — sinh? (v) = 1

Thus, r (u,v) = (cos (u) cosh (v) , sin (u) cosh (v) , sinh (v)) is a para-
metrization of the level surface

224yt 2=1

which we recognize as a hyperboloid in one sheet.

A sphere of radius R centered at the origin is often parametrized in terms of
longitude 6 and latitude , which results in the parameterization

r (0, ) = (Rcos (¢) cos (f), Recos (¢) sin (0) , Rsin (p)) (2)



where 6 in [0,27] and ¢ is in [—-7/2,7/2].
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EXAMPLE 3 Show that (2) is a parameterization of the sphere of
radius R centered at the origin.

Solution: Since x = Rcos (go) cos (0 ) y = Rcos(p)sin () and
z = Rsin (), the identity cos? (§) + sin? (f) = 1 leads to

2 4y? = R2 cos? (¢) cos? (A) + R? cos? (i) sin? (0)
= R*cos” () [cos® (0) + sin (9)]
= R2 cos? ()
Moreover, z2 = R?sin? (¢) implies that
22 +y* + 2% = R% cos? (¢) + R*sin? (p) = R?

which is the equation of the sphere of radius R centered at the origin.

However, cartographers and mathematicians have long used parameterizations
of the sphere other than (2). For example, in 1599, the mapmaker Gerard
Mercator constructed a projection of the earth’s surface in which a straight line
on a map corresponds to a fixed compass bearing on the earth’s surface. To do



so, he first imagined that the sphere was inside of a cylinder with radius R.

This led to the Mercator parametrization of the sphere:
r (0, ) = (Rsech () cos (0) , Rsech (p) sin (0) , Rtanh (u))
where the hyperbolic secant and tangent functions are defined

1 sinh (u)

sech (p) = mv tanh (u) = cosh (p)

We will examine the Mercator parametrization more closely in the exercises.

Check your Reading: How would you define csch(t)?

Tangent Vectors to Parametric Surfaces

If ¢ is a constant, then r (u,q) is a function of u only and is therefore a curve
(specifically, it is the v-curve for v = q). As a result, the velocity vector

r, = <fua Gu, hu>



is tangent to the curve. Since the curve lies on the surface parametrized by
r(u,v) = {(f (u,v),g(u,v),h(u,v)), it follows that r, (p,q) is tangent to the
surface at the point with coordinates (p, ¢). Likewise, we define r,, = (fy, gu, hy)
and similarly it follows that r, (p, ¢) is also tangent to the surface at the point
corresponding to (p,q) .

Moreover, we say that the parametrization is reqular at a point P on the surface
if r, and r, are nonzero and non-parallel at P; otherwise, the parametrization
is said to be singular at P.

EXAMPLE 4 Find r, and r,, for the sphere
r (u,v) = {(cos (u) sin (v) , sin (u) sin (v) , cos (v))
Solution: To find r,, we apply 9, to r to obtain
r, = (—sin (u) sin (v) , cos (u) sin (v) , 0)
Likewise, to find r,, we apply J, to r to obtain

r, = (cos (u) cos (v) ,sin (u) cos (v) , —sin (v))



Notice in example 3 that
r, - Iy, = —sin (u) sin (v) cos (u) cos (v) + cos (u) sin (v) sin (u) cos (v) = 0

That is, the vectors r,, and r, are perpendicular for all (u, v). Parameterizations
in which r, and r, are orthogonal for all (u,v) are important in applications
because they introduce an orthogonal coordinate system in each tangent plane:

1

If r,-r, = 0 for all (u,v), then we say that the parametrization r (u,v) is
orthogonal.
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EXAMPLE 5 Find r, and r, and determine if the following para-
metrization is orthogonal:

r= <u2 — v2, 2uv, u? + 02>
Solution: To find r,, we apply 0, to r to obtain
r, = (2u, 2v, 2u)
Likewise, to find r,, we apply J, to r to obtain
r, = (2v,2u, —2v)
The dot product of r, with r, is given by
r, - r, = 4uv + 4duv — duv = duv

Since r, - r, # 0, the parametrization is not orthogonal.

Check your Reading: Are all orthogonal parameterizations also regular at
every point? Explain.

Surfaces of Revolution

If f(z) > 0 for all = in [a,b], then the revolution of y = f (x) about the z-axis
results in a surface of revolution.

As a parametric surface, this surface of revolution can be represented by

r(u,v) = (u, f (u)sin (v), f (u) cos (v))

where (u,v) is in [a, b] X [0, 27] . In single variable calculus, we derived formulas
for calculating the volume of a solid bounded by a surface of revolution.
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EXAMPLE 6 Find the equation of the surface of revolution ob-
tained by revolving the curve y = xe™ for z in [0,3] about the
r-axis

0.6
0.4
0.2

15 2 25 3

—
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Find the tangent vectors r, and r,. Is the parametrization orthog-
onal?

Solution: To do so, we notice that f (u) = ue™", so that the para-
metrization is
r(u,v) = (u, ue “sin (v) ,ue* cos (v))

The graph of r (u, v) is shown below for (u,v) in [0, 3] x [0, 27] .

Notice now that r, = (1, (e " — ue *)sin (v), (" — ue™ ") cos (v))
and
r, = (0, —ue " cos (v) ,ue” " sin (v))

Moreover, it is rather easy to show that r, - r, = 0, which implies
that the parametrization is orthogonal.
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More generally, if f (u) > 0 for all w in [a, ], then

r (u,0) = (g (u), f (u)sin (v), f (u) cos (v))

is the surface obtained by revolving the curve

r(u,0) = (g (u),0, f (w))

about the z-axis, where v is in [a, b] and v is in [0, 27].

EXAMPLE 7 What surface of revolution is obtained from revolv-
ing
r(u,0) = (cos (u),0,3 +sin (u))

about the z-axis? Find the tangent vectors r, and r,. Is the para-
metrization orthogonal?

Solution: Since r (u,0), u in [0,27], is a circle of radius 1 centered
at (0,0, 3), the surface is a torus parameterized by

r (u,v) = {cos (u) , (3 + sin (u)) sin (v) , (3 + sin (u)) cos (v))
The graph of r (u,v) is shown below for (u,v) in [0, 2] x [0, 2] .
javaviewtorus
Notice now that r, = (—sin (1) , cos («) sin (v) , cos («) cos (v)) and
r, = (0, — (3 + sin (u)) cos (v) , (3 + sin () sin (v))

It follows that r,, - r, = 0, which implies that the parametrization is
orthogonal.

Exercises

Use a graphing calculator or computer algebra system to sketch each surface and
then find the level surface representations of each of the following parametric
equations. Also, calculate r,, and r, and determine if the parameterization is

orthogonal.
1. r=(vsin(u),vcos(u),v) 2. r=(vsin(u),v,vcos(u))
3. r = (sin(u)cos(v),cos(u),sin (u)sin (v)) 4. r = (sin(v)sin (u), cos (v) sin (u) , cos (u))
5. r = (2sin(u)cos (v),3cos (u),2sin (u)sin (v)) 6. = (2sin (u) cos (v) , 2 cos (u) , sin (u) sin (v))
7. 1 = (sin (u) cosh (v),sinh (v) , cos (u) cosh (v)) 8. r = (sin (u) cosh (v),sin (u) sinh (v) , cos (u))
9. r = (sec(u)sin (v),sec (u)cos (v),tan (u)) 10. r = (vsin(u),vcos (u),v?sin (2u))
11. r={(e’sin(u),e” cos(u),e"?) 12, r = (sin(v)cos (u),sin (v)sin (u), sin® (v) cos (
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Verify that each of the following parameterizes the unit sphere. Then calculate
r, and r,. Is the parameterization orthogonal?

(v))

13.  r = (cos (u)sin (v), cos (v) ,sin (u) sin (v)) 14. r = (sin (v)sin (u) , cos (v) sin (u) , cos (u))
15.  r = (sin (v), cos (u) cos (v) ,sin (u) cos (v)) 16.  r = (cos (u) cos (v),sin (u) cos (v) , sin

17. r:<u7\/1—uzsin( ). V1 —u2cos (v)) 18. r=(v1—wu? usin(v),ucos(v))

19. 1= { By, i, WS 20. 1=y, m ST

Find the surface of revolution obtained by revolving the following surfaces about
the x-axis. Then find v, and r, and determine if the parametrization is orthog-
onal.

21. y=uz, zin [0,1] 26. y=a+1, zin[0,1]

23. y=ax—2% xin[0,1] 28. y=x—2% xin[0,1]

25. y=cosh(z), zin [-1,1] 30. y=sin(z), z in [0, 7]

27, r(u,0) = (v*,0,u), uwin [0,1] 28. r(u,0)= (e_“ 0,u), w in [0,1]
29. r(u,0) = (2sin(u),0,3 + 2cos (u)) 30. r(u,0) = (sin(u), 0,5+ cos (u))

w in [0, 27] w in [0, 27]

31. Find another parametrization of the sphere of radius R centered at the
origin by revolving the upper half circle

y=vVR?>—2% zin [-R,R)

about the z-axis. Is the parametrization orthogonal?
32. Show that every parametric equation of the form

r (u,v) = (f (v) cos (u) , f (v) sin (u) , f (v))

is a parametrization of a section the cone 22 + y? = 22. Is the parametrization
orthogonal?
33. A Mobius strip is a surface parametrized by

r(u,v) = <cos (u) + v cos (g) cos (u) , sin (u) 4+ v cos (g) sin (u) , vsin (g)>

for win [0, 2] and v in [—0.3,0.3] . Graph the Mobius strip with either a graphing
calculator or a computer. Also find r, and r,. Is the parameterization of the
Mobius strip orthogonal?

34. Show that r (¢, u,v) = (sin () cos (v) , cos (t) cos (v) , sin (u) sin (v) , cos (u) sin (v))
is a parametrization of the sphere in 4 dimensions given by

m2+y2+22+w2:1

35. Mercator: Use an identity for the hyperbolic trigonometric functions
to prove that
sech? (A) + tanh? (4) = 1
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Then show that the Mercator parametrization
r (0, ) = (Rsech (i) cos (0) , Rsech (p) sin (0) , Rtanh (u))

is indeed a parametrization of the sphere of radius R centered at the origin.

36. Mercator: Find ry and r, for the Mercator parameterization in ex-
ercise 35. Is the parameterization orthogonal? What does that imply about a
map constructed as a Mercator projection? Also, what happens to the length
of r, (0, 1) as p approaches co? What does this imply about the Mercator pro-
jection?

37. Mercator: Show that the Mercator projection in exercise 35 is a
surface of revolution (for p in (—oo,00) ). How is the half circle in the zz-plane
related to the cylinder 2 +y? = R? as z approaches co on the cylinder? (More
in the Maple worksheet)

38. Cylindrical: The ray from the origin through the point P(z,y, z) on
a sphere of radius R intersects a right circular cylinder of radius R at only one
point, which we call Q).

If @ is of the form (Rcos(u), Rsin (u), Rv), then what are the coordinates of
P in terms of w and v? What is the resulting parameterization of the sphere?
Is it the Mercator projection?
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39. Find the parametrization of the torus which results from revolving the
circle

r(u) = (rsin(u),0, R+ rcos (u))

for w in [0, 27] about the x-axis, where R > r > 0 are constants. *What is a
level surface representation of the torus?

41. What is the level surface representation of a sphere of radius R centered
at a point (h, k,1)? Explain.

42. Show that every cone whose horizontal cross-sections (i.e., level curves)
are circles is of the form

22 4y = m?2?
What is the significance of the m in this equation?

43. Write to Learn: Determine the longitude 6y and latitude ¢, of your
present location, and then use (2) to find rg and r, at your present location.
In a short essay, present your results and determine the direction (north, south,
east, west) that ry and r, are pointing in.

44. Write to Learn: Derive the parameterization of the surface obtained
by revolving the curve y = f(z) , = in [a,b], about the y-axis. Present and
explain your derivation in a short essay.

45. Write to Learn: Stereographic projection assigns to each point (u, v, 0)
the point (z,y, z) on the unit sphere that is on the line from the point (0,0, 1)
through the point (u,v,0) .

Use similar right triangles to show that stereographic projection leads to the
following parameterization of the sphere:

2u 2v w402 —1
r =
w2402+ 1 w2+ 02417 u? +02 41
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