``````
This is str(pascal):
1                                 1 1                               1 2 1                             1 3 3 1                           1 4 6 4 1                        1 5 10 10 5 1                     1 6 15 20 15 6 1                 1 7 21 35 35 21 7 1               1 8 28 56 70 56 28 8 1          1 9 36 84 126 126 84 36 9 1    1 10 45 120 210 252 210 120 45 10 1
The mean of the coefficients of the last row is: 93.090909

This is repr(pascal2):
1                                         1   1                                     1   2   1                                 1   3   3   1                             1   4   6   4   1                         1   5  10  10   5   1                     1   6  15  20  15   6   1                 1   7  21  35  35  21   7   1             1   8  28  56  70  56  28   8   1         1   9  36  84 126 126  84  36   9   1     1  10  45 120 210 252 210 120  45  10   1

Binomial expansion:

1
x + y
x2 + 2xy + y2
x3 + 3x2y + 3xy2 + y3
x4 + 4x3y + 6x2y2 + 4xy3 + y4
x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5
x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6
x7 + 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 + y7
x8 + 8x7y + 28x6y2 + 56x5y3 + 70x4y4 + 56x3y5 + 28x2y6 + 8xy7 + y8
x9 + 9x8y + 36x7y2 + 84x6y3 + 126x5y4 + 126x4y5 + 84x3y6 + 36x2y7 + 9xy8 + y9
x10 + 10x9y + 45x8y2 + 120x7y3 + 210x6y4 + 252x5y5 + 210x4y6 + 120x3y7 + 45x2y8 + 10xy9 + y10

Binomial theorem in probability:

Probability of getting at most 0 heads in 10 flips is: 0.000977
``````

# Pascal Triangle

What are the first and last levels of the Pascal triangle?