This is str(pascal):

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1

The mean of the coefficients of the last row is: 93.090909 This is repr(pascal2):
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
Binomial expansion: 1 x + y x2 + 2xy + y2 x3 + 3x2y + 3xy2 + y3 x4 + 4x3y + 6x2y2 + 4xy3 + y4 x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5 x6 + 6x5y + 15x4y2 + 20x3y3 + 15x2y4 + 6xy5 + y6 x7 + 7x6y + 21x5y2 + 35x4y3 + 35x3y4 + 21x2y5 + 7xy6 + y7 x8 + 8x7y + 28x6y2 + 56x5y3 + 70x4y4 + 56x3y5 + 28x2y6 + 8xy7 + y8 x9 + 9x8y + 36x7y2 + 84x6y3 + 126x5y4 + 126x4y5 + 84x3y6 + 36x2y7 + 9xy8 + y9 x10 + 10x9y + 45x8y2 + 120x7y3 + 210x6y4 + 252x5y5 + 210x4y6 + 120x3y7 + 45x2y8 + 10xy9 + y10 Binomial theorem in probability: Probability of getting at most 0 heads in 10 flips is: 0.000977

Pascal Triangle

What are the first and last levels of the Pascal triangle?